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A procedure is developed to generate a non-Gaussian stationary stochastic process with the knowledge of its
first-order probability density and the spectral density. The procedure is applicable to an arbitrary probability
density if the spectral density is of a low-pass type, and to a large class of probability densities if the spectral
density is of a narrow band, with its peak located at a nonzero frequency.@S1063-651X~96!07307-2#

PACS number~s!: 02.50.2r

I. INTRODUCTION

When investigating the response of a randomly excited
dynamical system, either analytically or by Monte Carlo
simulation, the modeling of the excitation process must agree
with experimental evidence. In many cases, it is reasonable
to assume that the excitation is a stationary stochastic pro-
cess, but clearly non-Gaussian, and the experimental knowl-
edge is usually limited to the estimates of the first-order
probability density and the spectral density. Early publica-
tions ~e.g., @1,2#! on simulating stationary excitation pro-
cesses made use of the Fourier series expansion, an idea
traceable to that of Rice@3#. However, this procedure is only
suitable for matching a target spectral density, not a target
non-Gaussian distribution, since such a series is asymptoti-
cally Gaussian. The matching of both a non-Gaussian first-
order probability density and a spectral density is consider-
ably more difficult. Two approaches have been proposed to
meet the non-Gaussian requirement. One by Yamazaki and
Shinozuka@4# is to incorporate a numerical iterative proce-
dure into the usual Fourier-series representation. Another is
to apply a zero-memory nonlinear transformation to the out-
put of a linear filter excited by a Gaussian white noise@5–8#.
The first procedure is purely numerical, whereas the success
of the second procedure is dependent very much on the abil-
ity to devise a particular nonlinear transformation to suit a
particular case.

In a recent paper, Kontorovich and Lyandres@9# have
proposed a scheme in which the simulated process is ob-
tained as the output of a nonlinear system under Gaussian
white-noise input. In this case, the simulated process is a
diffusive Markov process or a component of a Markov vec-
tor, and its probability density is governed by a Fokker-
Planck equation. In the Kontorovich-Lyandres procedure, the
coefficients in the equation, known as the drift and diffusion
coefficients, are chosen so that the solution form agrees with
that of the target probability density, and the parameters in
the solution form are then determined in order to approxi-
mate the target spectral density. This procedure is attractive
since the simulated process is embodied in one or a set of
governing equations; thus it is more amenable to analytical
treatments, in addition to being a useful tool for Monte Carlo
studies.

In the present paper, an alternative procedure is devel-
oped, also on the basis of the Markov theory, in which
matching of the spectral density is accomplished by adjust-

ing the drift coefficient alone, which is then followed by
adjusting the diffusion coefficient to match the probability
density. The alternative scheme is more efficient and easier
to apply, as demonstrated in examples.

II. LOW-PASS SPECTRAL DENSITY

Consider a stationary stochastic processX(t) defined on
the interval [xl ,xr ], which can be either bounded or un-
bounded. Without loss of generality, we assume thatX(t)
has a zero mean. Thenxl,0 andxr.0. With the knowledge
of the probability densityp(x) and the spectral density
FXX~v! of X(t), we wish to establish a procedure to model
the processX(t).

Let the spectral density be of the following low-pass type:

FXX~v!5
as2

p~v21a2!
, a.0, ~1!

wheres2 is the mean-square value ofX(t). If X(t) is also a
diffusive Markov process, then it is governed by the follow-
ing stochastic differential equation in the Itoˆ sense@10#:

dX52aX dt1D~X!dB~ t !, ~2!

wherea is the same parameter in~1!, B(t) is a unit Wiener
process, and the coefficients2aX andD(X) are known as
the drift and the diffusion coefficients, respectively. To dem-
onstrate that this is the case, multiply~2! by X(t2t) and
take the ensemble average to yield

dR~t!

dt
52aR~t!, ~3!

whereR~t! is the correlation function ofX(t), namely,R(t)
5E[X(t2t)X(t)]. Equation~3! has a solution

R~t!5A exp~2autu! ~4!

in which A is arbitrary. By choosingA5s2, expressions~1!
and ~4! become a Fourier transform pair. Thus Eq.~2! gen-
erates a processX(t) with a spectral density~1!. Note that
the diffusion coefficientD(X) has no influence on the spec-
tral density.

Now we shall determineD(X) so thatX(t) possesses a
given stationary probability densityp(x). The Fokker-Planck
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equation, governing the probability densityp(x) of X(t) in
the stationary state, is obtained from~2! as follows:

d

dx
G52

d

dx H axp~x!1
1

2

d

dx
@D2~x!p~x!#J 50, ~5!

whereG is known as the probability flow. SinceX(t) is
defined on [xl ,xr ], G must vanish at the two boundaries
x5xl and x5xr . In the present one-dimensional case,G
must vanish everywhere; consequently, Eq.~5! reduces to

axp~x!1
1

2

d

dx
@D2~x!p~x!#50. ~6!

Integration of~6! results in

D2~x!p~x!522aE
xl

x

up~u!du1C, ~7!

whereC is an integration constant. To determine the integra-
tion constantC, two cases are considered. Ifxl52`, or
xr5`, or both, thenp(x) must vanish at the infinite bound-
ary; thusC50 from ~7!. If both xl andxr are finite, then the
drift coefficient2axl at the left boundary is positive, and the
drift coefficient2axr at the right boundary is negative, in-
dicating that the average probability flows at the two bound-
aries are directed inward. However, the existence of a sta-
tionary probability density implies that all sample functions
must remain within [xl ,xr ], which requires additionally that
the drift coefficient vanish at the two boundaries, namely,
D2(xl)5D2(xr)50. This is satisfied only ifC50. In either
case,

D2~x!52
2a

p~x!
E
xl

x

up~u!du. ~8!

FunctionD2(x), computed from Eq.~8!, is non-negative, as
it should be, sincep(x)>0 and the mean value ofX(t) is
zero. Thus we have proved that the stochastic processX(t)
generated from~2! with D(X) given by~8! possesses a given
stationary probability densityp(x) and the spectral density
~1!.

The Itô type stochastic differential equation~2! may be
converted to that of the Stratonovich type as follows:

Ẋ52aX2
1

4

dD2~X!

dX
1
D~X!

A2p
j~ t !, ~9!

where j(t) is a Gaussian white noise with a unit spectral
density. Equation~9! is better suited for simulating sample
functions. Some illustrative examples are given below.

Example 1.Assume thatX(t) is uniformly distributed,
namely,

p~x!5
1

2D
, 2D<x<D. ~10!

Substituting~10! into ~8!,

D~x!5a~D22x2!. ~11!

In this case, the desired Itoˆ equation is given by

dX52aXdt1Aa~D22X2!dB~ t !. ~12!

It is of interest to note that a family of stochastic processes
@This family of stochastic processes was discovered in a dis-
cussion with W. Wedig.# may be obtained from the follow-
ing generalized version of~12!:

dX52aXdt1Aab~D22X2!dB~ t !. ~13!

The stationary probability densities ofX(t) generated from
~13! are shown in Fig. 1 for severalb values. Their appear-
ances are strikingly diverse, yet they share the same spectral
density~1!.

Example 2.Let X(t) be governed by a Rayleigh distribu-
tion

p~x!5g2x exp~2gx!, g.0, 0<x,`. ~14!

Its centralized versionY(t)5X(t)22/g has a probability
density

p~y!5g~gy12!exp~2gy12!, 2
2

g
<y,`. ~15!

From Eq.~8!,

D2~y!5
2a

g S y1
2

g D . ~16!

The Itô equation forY(t) is

dY52aYdt1F2a

g SY1
2

g D G1/2dB~ t ! ~17!

and the corresponding equation forX(t) in the Stratonovich
form is

Ẋ52aX1
3a

2g
1S a

pg
XD 1/2j~ t !. ~18!

Note that the spectral density ofX(t) contains a delta func-
tion ~4/g2!d~v! due to the nonzero mean 2/g.

Example 3.Consider a family of probability densities,
which obeys an equation of the form

FIG. 1. Stationary probability density ofX(t) generated from
~13!.
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d

dx
p~x!5J~x!p~x!. ~19!

Equation~19! can be integrated to yield

p~x!5C1expS E J~x!dxD , ~20!

whereC1 is a normalization constant. In this case,

D2~x!522a exp@2J~x!#E x exp@J~x!#dx. ~21!

Several special cases may be noted. Let

J~x!52gx22dx4, 2`,x,`, ~22!

whereg may be arbitrary ifd.0. Substitution of~22! into
~8! leads to

D2~x!5
a

2
Ap/d expFdS x21 g

2d D 2GerfcFAdS x21 g

2d D G ,
~23!

where erfc(y) is the complementary error function defined as

erfc~y!5
2

Ap
E
y

`

e2t2dt. ~24!

The case ofg,0 andd.0 corresponds to a bimodal distri-
bution, and the case ofg.0 and d50 corresponds to a
Gaussian distribution.

The Pearson family of probability distributions~e.g.,@11#!
corresponds to

J~x!5
a1x1a0

b2x
21b1x1b0

. ~25!

In the special case ofa01b150,

D2~x!52
2a

a112b2
~b2x

21b1x1b0!. ~26!

III. NARROW-BAND SPECTRAL DENSITY

To generate a narrow-band stochastic process with the
spectrum peak located at a nonzero frequency, a two-
dimensional system is required. A large class of two-
dimensional system is described by the following pair of Itoˆ
equations:

dX15~a11X11a12X2!dt1D1~X1 ,X2!dB1~ t !,
~27!

dX25~a21X11a22X2!dt1D2~X1 ,X2!dB2~ t !,

whereB1(t) andB2(t) are two independent unit Wiener pro-
cesses. Note that the drift coefficients are assumed to be
linear in X1 and X2, with constantsai j to be determined
along with the functional forms for the diffusion coefficients
D1(X1 ,X2) andD2(X1 ,X2). For the system to be stable and
possess a stationary probability density, it is required that
a11,0, a22,0, anda11a222a12a21.0. Multiplying ~27! by
X1(t2t) and taking the ensemble average, we have

d

dt
R11~t!5a11R11~t!1a12R12~t!,

~28!
d

dt
R12~t!5a12R11~t!1a22R12~t!,

where

R11~t!5E@X1~ t2t!X1~ t !#,
~29!

R12~t!5E@X1~ t2t!X2~ t !#.

Equation set~28! is solved subject to the initial conditions

R11~0!5m115E@X1
2#, R12~0!5m125E@X1X2#.

~30!

In order to obtain directly the spectral densityF11~v! of
X1(t), define the following integral transformation:

R̄i j ~v!5F @Ri j ~t!#5
1

p E
0

`

Ri j ~t!e2 ivtdt. ~31!

ThenF11~v! can be obtained as

F11~v!5
1

2p E
2`

`

R11~t!e2 ivtdt5Re@R̄11~v!#, ~32!

where Re denotes the real part. SinceRi j ~t!→0 ast→`, it
can be shown that

F S dRi j ~t!

dt D5 ivR̄i j ~v!2
1

p
Ri j ~0!. ~33!

Differential equations~28! in the time domain can be
transformed into algebraic equations in the frequency do-
main as follows, using~31! and ~33!:

ivR̄112
m11

p
5a11R̄111a12R̄12,

~34!

ivR̄122
m12

p
5a21R̄111a22R̄12.

Solving for R̄11~v! and taking its real part, we obtain

F11~v!5
2~a11m111a12m12!v

21A2~a12m122a22m11!

p@v41~A1
222A2!v

21A2
2#

,

~35!

where A15a111a22, and A25a11a222a12a21. Expression
~35! is quite general for a narrow-band spectral density. The
constantsa11, a12, a21, anda22 can be adjusted to obtain a
best fit for a target spectrum.

The Fokker-Planck equation for the joint probability den-
sity of X1(t) andX2(t) in the stationary state is given by
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]
]x1

S~a11x11a12x2!p2
1
2

]
]x1

@D1
2~x1 ,x2!p# D

1
]

]x2
S ~a21x11a22x2!p2

1
2

]
]x2

@D2
2~x1 ,x2!p# D50.

~36!

Our objective is to determine the non-negative functions
D 1

2(x1 ,x2) and D 2
2(x1 ,x2) for a given p(x1 ,x2). If such

D 1
2(x1 ,x2) andD 2

2(x1 ,x2) functions can be found, then the
equations for simulation in the Stratonovich form are given
by

Ẋ15a11X11a12X22
1

4

]

]x1
D1
2~X1 ,X2!1

D1~X1 ,X2!

A2p
j1~ t !,

~37!

Ẋ25a21X11a22X22
1

4

]

]x2
D2
2~X1 ,X2!1

D2~X1 ,X2!

A2p
j2~ t !,

where j1(t) and j2(t) are two independent unit Gaussian
white noises.

Example 4.Consider two independent uniformly distrib-
uted stochastic processX1(t) andX2(t), namely,

p~x1 ,x2!5
1

4D1D2
,

2D1<x1<D1 , 2D2<x2<D2 . ~38!

Substituting~38! into ~36!, we obtain

a112
1

2

]2

]x1
2 D1

21a222
1

2

]2

]x2
2 D2

250, ~39!

which is satisfied if

D1
252a11~D1

22x1
2!, D2

252a22~D2
22x2

2!. ~40!

The two equations in~37! are now

Ẋ15
1

2
a11X11a12X21S 2

a11
2p

~D1
22X1

2! D 1/2j1~ t !,
~41!

Ẋ25a21X11
1

2
a22X21S 2

a22
2p

~D2
22X2

2! D 1/2j2~ t !,
which generate a uniformly distributed stochastic process
X1(t) with a spectral density given by~35!.

Example 5.Consider a joint stationary probability density
of X1(t) andX2(t) in the form

p~x1 ,x2!5r~l!, l5
1

2
x1
22

a12
2a21

x2
2,

2`,x1 ,x2,`, ~42!

where the ratioa12/a21 is assumed to be negative, andr~l! is
an arbitrary function such thatp(x1 ,x2) is both non-negative
and normalizable. Substitution of~42! into ~36! leads to

]

]x1
S a11x1p2

1

2

]

]x1
@D1

2~x1 ,x2!p# D
1

]

]x2
S a22x2p2

1

2

]

]x2
@D2

2~x1 ,x2!p# D50. ~43!

Equation~43! is satisfied by two non-negative functions,

D1
2~x1 ,x2!5

2a11
p~x1 ,x2!

E
x1l

x1
up~u,x2!du,

~44!

D2
2~x1 ,x2!5

2a22
p~x1 ,x2!

E
x2l

x2
np~x1 ,n!dn.

One useful form forr~l! is

p~x1 ,x2!5r~l!5C1exp~2b1l2b2l
2!, b2.0.

~45!

The marginal probability density forX1(t) is then

p~x1!5C1f ~x1!exp~2 1
2b1x1

22 1
4b2x1

4!, ~46!

where

f ~x1!5E
2`

`

expS a12
2a21

~b11b2x1
2!u22

b2a12
2

4a21
2 u4D du.

~47!

The equation set~37! with D 1
2 andD 2

2 given by~44! may be
used to generate a stochastic processX1(t) which has a prob-
ability density of the form~46! and a spectral density of the
form ~35!. Constantsai j in ~35! can be adjusted to match a
target spectral density, while constantsbi in ~46! can be ad-
justed to match a target probability density.

Another useful form forr~l! is given by

p~x1 ,x2!5r~l!5C1~l1b!2d, b.0, d.1. ~48!

In this case,

D1~x1 ,x2!52
2a11
d21

~l1b!,

D2~x1 ,x2!5
2a22a12
a12~d21!

~l1b!, ~49!

and

p~x1!5C1E
2`

` S 12 x1
22

a12
2a21

u21bD 2d

du. ~50!

A large class of probability densities may be fitted in the
form of ~46! or ~50!. Once the parametersb1 andb2 in ~46!
or b andd in ~50! are determined,D1 andD2 can be calcu-
lated from~44!.

IV. CONCLUSION

A systematic procedure is developed to model a non-
Gaussian stochastic process as a diffusive Markov process,
or a component of a diffusive Markov vector, with the
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knowledge of its probability density and spectral density.
The key step is to obtain the drift and diffusion coefficients
in the associated Fokker-Planck equation; the former are de-
termined from the given spectral density and the latter from
the probability density. It is shown that, if the given spectral
density is of a low-pass type, then a one-dimensional Mar-
kov model is adequate regardless of the type of the probabil-
ity distribution. In the case of a narrow-band spectral density
with its peak located at a no-zero frequency, a Markov vector
model is required, and the target probability density may be

fitted within a large class of non-Gaussian distributions.
Since the stochastic process model so obtained is described
by stochastic differential equations, it can be used in analyti-
cal investigations or as a basis for Monte Carlo simulation.
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